Số lượt truy cập/ Number of visits
Tổng số lượt xem trang
Thứ Hai, 3 tháng 3, 2025
Đất Hiếm là gì?
Thứ Hai, 11 tháng 11, 2024
Hydrogen Energy Storage
Thứ Ba, 28 tháng 5, 2024
Control and Record Signals of the Fuel Cell Stack - 100W using Matlab/Simulink
Thứ Hai, 11 tháng 3, 2024
Giới thiệu trang thiết bị nghiên cứu cho giáo sư Ấn ghé thăm phòng nghiên cứu
Thứ Hai, 12 tháng 2, 2024
Hybrid electric vehicle
Thứ Bảy, 9 tháng 12, 2023
XE ĐIỆN CẤU TẠO, CHI TIẾT
𝟭. 𝘽𝙖𝙩𝙩𝙚𝙧𝙮 (𝙖𝙡𝙡-𝙚𝙡𝙚𝙘𝙩𝙧𝙞𝙘 𝙖𝙪𝙭𝙞𝙡𝙞𝙖𝙧𝙮) – Bình ắc quy phụ: Bình ắc quy phụ trên xe điện nhằm cung cấp điện năng cho các phụ tải trên xe.
𝟮. 𝘾𝙝𝙖𝙧𝙜𝙚 𝙥𝙤𝙧𝙩 –Cổng sạc: Cổng sạc cho phép xe kết nối với nguồn điện bên ngoài để sạc bộ pin chính.
𝟯. 𝘿𝘾/𝘿𝘾 𝙘𝙤𝙣𝙫𝙚𝙧𝙩𝙚𝙧 – Bộ chuyển đổi DC/DC: Thiết bị này chuyển đổi nguồn DC có điện áp cao hơn từ bộ chính trên xe thành nguồn DC có điện áp thấp hơn cần thiết để hoạt động các phụ tải của xe và sạc lại ắc quy phụ.
𝟰. 𝙀𝙡𝙚𝙘𝙩𝙧𝙞𝙘 𝙩𝙧𝙖𝙘𝙩𝙞𝙤𝙣 𝙢𝙤𝙩𝙤𝙧 – Mô tơ kéo chủ động: Sử dụng năng lượng từ bộ pin chính, động cơ này dẫn động các bánh xe của ô tô. Một số xe sử dụng động cơ này vừa làm chức năng động cơ và máy phát điện thực hiện cả chức năng truyền động và tái tạo năng lượng (phanh tái sinh).
𝟱. 𝙊𝙣𝙗𝙤𝙖𝙧𝙙 𝙘𝙝𝙖𝙧𝙜𝙚𝙧: Lấy nguồn điện xoay chiều đầu vào được cung cấp qua cổng sạc và chuyển đổi thành nguồn DC để sạc bộ pin chính. Nó giám sát các đặc tính của pin, với các thông số như điện áp, dòng điện, nhiệt độ và trạng thái sạc trong khi sạc pin.
𝟲. 𝙋𝙤𝙬𝙚𝙧 𝙚𝙡𝙚𝙘𝙩𝙧𝙤𝙣𝙞𝙘𝙨 𝙘𝙤𝙣𝙩𝙧𝙤𝙡𝙡𝙚𝙧 – Bộ điều khiển công suất: kiểm soát tốc độ của động cơ điện và mô-men xoắn mà nó tạo ra.
𝟳. 𝙏𝙝𝙚𝙧𝙢𝙖𝙡 𝙨𝙮𝙨𝙩𝙚𝙢 (𝙘𝙤𝙤𝙡𝙞𝙣𝙜) – Hệ thống quản lý nhiệt năng: Hệ thống này duy trì phạm vi nhiệt độ hoạt động thích hợp của động cơ, động cơ điện, các thiết bị điện tử công suất và các bộ phận khác.
𝟴. 𝙏𝙧𝙖𝙘𝙩𝙞𝙤𝙣 𝙗𝙖𝙩𝙩𝙚𝙧𝙮 𝙥𝙖𝙘𝙠 – Bộ pin chính: Lưu trữ điện năng để sử dụng cho động cơ điện.
𝟵. 𝙏𝙧𝙖𝙣𝙨𝙢𝙞𝙨𝙨𝙞𝙤𝙣 (𝙚𝙡𝙚𝙘𝙩𝙧𝙞𝙘) – Hộp số, truyền lực: Bộ truyền động truyền năng lượng cơ học từ động cơ điện kéo để dẫn động các bánh xe.
𝐄𝐋𝐄𝐂𝐓𝐑𝐈𝐂 𝐂𝐀𝐑/ 𝐕𝐄𝐇𝐈𝐂𝐋𝐄𝐒
𝟭. 𝘽𝙖𝙩𝙩𝙚𝙧𝙮 (𝙖𝙡𝙡-𝙚𝙡𝙚𝙘𝙩𝙧𝙞𝙘 𝙖𝙪𝙭𝙞𝙡𝙞𝙖𝙧𝙮): In an electric drive vehicle, the auxiliary battery provides electricity to power vehicle accessories.
𝟮. 𝘾𝙝𝙖𝙧𝙜𝙚 𝙥𝙤𝙧𝙩: The charge port allows the vehicle to connect to an external power supply in order to charge the traction battery pack.
𝟯. 𝘿𝘾/𝘿𝘾 𝙘𝙤𝙣𝙫𝙚𝙧𝙩𝙚𝙧: This device converts higher-voltage DC power from the traction battery pack to the lower-voltage DC power needed to run vehicle accessories and recharge the auxiliary battery.
𝟰. 𝙀𝙡𝙚𝙘𝙩𝙧𝙞𝙘 𝙩𝙧𝙖𝙘𝙩𝙞𝙤𝙣 𝙢𝙤𝙩𝙤𝙧: Using power from the traction battery pack, this motor drives the vehicle's wheels. Some vehicles use motor generators that perform both the drive and regeneration functions.
𝟱. 𝙊𝙣𝙗𝙤𝙖𝙧𝙙 𝙘𝙝𝙖𝙧𝙜𝙚𝙧: Takes the incoming AC electricity supplied via the charge port and converts it to DC power for charging the traction battery. It monitors battery characteristics such as voltage, current, temperature, and state of charge while charging the pack.
𝟲. 𝙋𝙤𝙬𝙚𝙧 𝙚𝙡𝙚𝙘𝙩𝙧𝙤𝙣𝙞𝙘𝙨 𝙘𝙤𝙣𝙩𝙧𝙤𝙡𝙡𝙚𝙧: This unit manages the flow of electrical energy delivered by the traction battery, controlling the speed of the electric traction motor and the torque it produces.
𝟳. 𝙏𝙝𝙚𝙧𝙢𝙖𝙡 𝙨𝙮𝙨𝙩𝙚𝙢 (𝙘𝙤𝙤𝙡𝙞𝙣𝙜): This system maintains a proper operating temperature range of the engine, electric motor, power electronics, and other components.
𝟴. 𝙏𝙧𝙖𝙘𝙩𝙞𝙤𝙣 𝙗𝙖𝙩𝙩𝙚𝙧𝙮 𝙥𝙖𝙘𝙠: Stores electricity for use by the electric traction motor.
𝟵. 𝙏𝙧𝙖𝙣𝙨𝙢𝙞𝙨𝙨𝙞𝙤𝙣 (𝙚𝙡𝙚𝙘𝙩𝙧𝙞𝙘): The transmission transfers mechanical power from the electric traction motor to drive the wheels.
Read:
How car electrical systems work - https://bit.ly/3xvuRJz
How fully Electric Cars Work - https://bit.ly/3qMJLbE
How Long Do Electric Car Batteries Last? - https://bit.ly/3jWdjSX
XE MÁY VÀ CÁC CHI TIẾT
CÁC VẤN ĐỀ VỀ PIN TRÊN XE HYBRID.
(English below).
Battery issues are among the most common concerns for hybrid
cars, and they primarily involve the hybrid battery pack. Here's more detailed
information about some specific aspects of battery problems:
1. **Battery Degradation:**
Hybrid batteries degrade over time due to a natural chemical
process. This degradation leads to a reduction in the battery's capacity and
overall performance.
- **Symptoms:**
Reduced fuel efficiency, shorter electric-only driving
range, and a decrease in overall hybrid system performance.
- **Prevention/Maintenance:**
Regular maintenance, avoiding deep discharges, and following
manufacturer recommendations can help slow down the degradation process.
2. **Faulty Cells:**
Hybrid battery packs are comprised of individual cells. If
one or more cells fail, it can impact the overall performance of the entire
battery pack.
- **Symptoms:**
Inconsistent performance, warning lights related to the
hybrid system, and decreased energy storage capacity.
- **Resolution:**
Depending on the severity, individual faulty cells may need
to be replaced, or in some cases, the entire battery pack might be replaced.
3. **Temperature Sensitivity:**
Hybrid batteries are sensitive to temperature extremes. High
temperatures can accelerate degradation, while very low temperatures can affect
performance.
- **Symptoms:**
Reduced efficiency, increased battery degradation, and
potential warnings related to temperature issues.
- **Prevention/Maintenance:**
Parking in shaded areas, using climate control systems to
moderate temperatures, and following manufacturer guidelines for extreme
weather conditions.
4. **Overcharging/Overheating:**
Overcharging or overheating of the hybrid battery can lead
to damage and reduced longevity.
- **Symptoms:**
Increased heat, warning lights related to the battery or
charging system, and potential system shutdown to prevent damage.
- **Prevention/Maintenance:**
Regularly checking and maintaining the cooling system,
avoiding overcharging, and following recommended charging practices.
5. **Software Management:**
Hybrid battery performance is often managed by sophisticated
software. Software glitches or errors can impact the battery's efficiency.
- **Symptoms:**
Inconsistent performance, warning lights, and potential drivability
issues.
- **Resolution:**
Software updates or reprogramming may be required to address
glitches. Regular software updates by the manufacturer can help prevent such
issues.
6. **State of Charge (SOC) Imbalance:**
Over time, individual cells within the battery pack may have
different states of charge, leading to an imbalance.
- **Symptoms:**
Reduced overall capacity, potential drivability issues, and
warning lights.
- **Resolution:**
Balancing procedures may be performed, and in some cases,
individual cells may need to be replaced.
If you suspect battery issues in your hybrid car, it's
crucial to consult your vehicle's manual, follow manufacturer recommendations,
and seek professional assistance from certified technicians or dealerships experienced
in hybrid systems.
Many hybrid manufacturers provide warranties specifically
for their hybrid components, including the battery, which may cover replacement
or repairs within a certain mileage or time period.
Regular maintenance and prompt attention to any warning
signs can help ensure the longevity and reliability of the hybrid battery.
Read More:
How do Hybrid Cars Work? Internal Structure and Basic Principle - https://innovationdiscoveries.space/how-do-hybrid-cars.../
How fully Electric Cars Work - https://innovationdiscoveries.space/how-fully-electric.../
ELECTRIC VEHICLES: COMPONENTS AND WORKING PRINCIPLE - https://innovationdiscoveries.space/electric-vehicles.../
Can You Jump-Start a Hybrid Car? - https://innovationdiscoveries.space/can-you-jump-start-a.../
How Do Hydrogen Engines Function? - https://innovationdiscoveries.space/how-do-hydrogen.../
Thứ Hai, 13 tháng 3, 2023
Tại sao số mũ đoạn nhiệt k = Cp/Cv > 1?
Câu hỏi: Tại sao số mũ đoạn nhiệt k = Cp/Cv > 1?
- Đường đẳng nhiệt là đường đỏ và đường đoạn nhiệt là đường đen.
- Đường đoạn nhiệt là đẳng entropy.
Trả lời
Theo nguyên lý nhiệt động học thứ nhất:
dq = CpdT - vdp (1)
dq = CvdT + pdv (2)
Lấy (1) - (2) sẽ nhận được: (Cp - Cv)dT = vdp + pdv = d(pv) (3)
Mà pv = RT, R là hằng số Bozltman, R = 8,314/M (kJ/(kg.K)), M (kg/Kmol) phân tử lượng chất khí.
Từ (3) suy ra: (Cp - Cv)dT = d(RT) = RdT (4)
Vậy: Cp - Cv = R > 0 => Cp > Cv = > k >1 (đpcm)
Thứ Bảy, 18 tháng 2, 2023
Please give me classification of fuel cells?
Fuel cells can be classified based on their type of electrolyte and the fuel used. Here are the common types of fuel cells:
Proton Exchange Membrane (PEM) Fuel Cell: These fuel cells use a solid polymer electrolyte, usually made of a fluorocarbon polymer, to conduct the protons. PEM fuel cells typically use hydrogen as fuel, but can also use methanol or other hydrocarbons. They operate at low temperatures (usually below 100°C) and can be used for transportation and stationary power applications.
Solid Oxide Fuel Cell (SOFC): SOFCs use a solid ceramic electrolyte, typically made of zirconia or ceria, to conduct oxygen ions. SOFCs can use a variety of fuels including hydrogen, natural gas, biogas, and propane. They operate at high temperatures (typically between 600°C and 1000°C) and are best suited for stationary power applications.
Molten Carbonate Fuel Cell (MCFC): MCFCs use a molten carbonate electrolyte to conduct carbonate ions. They can use a variety of fuels including natural gas, biogas, and coal gas. They operate at high temperatures (typically between 600°C and 700°C) and are best suited for stationary power applications.
Alkaline Fuel Cell (AFC): AFCs use a potassium hydroxide solution as the electrolyte to conduct hydroxide ions. They are typically used for space applications because they have low power densities and are sensitive to carbon dioxide.
Direct Methanol Fuel Cell (DMFC): DMFCs use methanol as the fuel and a PEM as the electrolyte. They are typically used for portable applications because they have high energy density and do not require fuel storage.
Phosphoric Acid Fuel Cell (PAFC): PAFCs use phosphoric acid as the electrolyte to conduct hydrogen ions. They can use a variety of fuels including natural gas, propane, and diesel. They operate at temperatures between 150°C and 200°C and are best suited for stationary power applications.
Regenerative Fuel Cell (RFC): RFCs are reversible fuel cells that can generate electricity from a fuel source and then be recharged by electrolyzing water to produce hydrogen and oxygen. They are typically used for space applications because they can provide both power and life support.
Each type of fuel cell has its own advantages and disadvantages, and is best suited for certain applications. The choice of fuel cell depends on factors such as cost, efficiency, operating conditions, and power requirements.
How do you know the stoichiometry ratio in fuel cell?
The stoichiometric ratio in a fuel cell is the ratio of the reactants required for complete reaction and can be calculated based on the chemical reaction that occurs in the fuel cell.
In a proton exchange membrane (PEM) fuel cell, the chemical reaction that occurs is:
2H2 (hydrogen) + O2 (oxygen) → 2H2O (water)
The stoichiometric ratio is the ratio of the number of oxygen molecules to the number of hydrogen molecules required for complete combustion. In this case, the stoichiometric ratio is 2:1, which means that two molecules of oxygen are required for every one molecule of hydrogen.
The stoichiometric ratio can also be calculated by balancing the chemical equation for the fuel cell reaction. Balancing the equation ensures that the number of atoms of each element is equal on both sides of the equation, which allows for the calculation of the stoichiometric ratio. In this case, balancing the equation would result in:
2H2 + O2 → 2H2O
The stoichiometric ratio can then be read directly from the balanced equation, which shows that two molecules of hydrogen react with one molecule of oxygen to produce two molecules of water.
The stoichiometric ratio can also vary depending on the type of fuel cell and the reaction that occurs. For example, in a solid oxide fuel cell (SOFC), the stoichiometric ratio may be different due to the different reactions that occur in the fuel cell. It is important to understand the specific chemistry of the fuel cell and its operating conditions to determine the correct stoichiometric ratio.
How to calculate and design new fuel cells?
Designing a new fuel cell involves a combination of theoretical calculations, simulation, and experimental testing. Here are some of the key steps in designing a new fuel cell:
Choose a fuel cell type: There are several types of fuel cells, each with its own advantages and disadvantages. The most common types of fuel cells are proton exchange membrane (PEM) fuel cells, solid oxide fuel cells (SOFCs), and molten carbonate fuel cells (MCFCs). Choose a fuel cell type that is appropriate for your application.
Determine the cell voltage and current density: The cell voltage is the voltage produced by a single cell of the fuel cell stack, while the current density is the current per unit area that passes through the fuel cell stack. The cell voltage and current density are dependent on the type of fuel cell, the materials used in the fuel cell, and the operating conditions.
Calculate the power output: The power output of the fuel cell is the product of the cell voltage and the current density. The power output is typically measured in watts or kilowatts.
Choose the materials: The choice of materials used in the fuel cell stack affects its performance, durability, and cost. The materials used in the electrodes, the electrolyte, and the current collectors need to be carefully selected.
Determine the fuel and oxidant flow rates: The flow rates of the fuel and oxidant (usually hydrogen and oxygen, respectively) need to be carefully controlled to maintain the proper stoichiometric ratio for the fuel cell reaction. The flow rates are dependent on the fuel cell type, operating conditions, and power output.
Optimize the fuel cell design: Use computer simulations and experimental testing to optimize the fuel cell design. This can involve changing the materials used, adjusting the cell voltage and current density, and modifying the flow rates of the fuel and oxidant.
Fabricate and test the fuel cell: Once the fuel cell design has been optimized, the fuel cell can be fabricated and tested. The performance of the fuel cell can be measured under various operating conditions, and any issues can be addressed through further optimization.
Designing a new fuel cell is a complex process that requires a strong understanding of materials science, electrochemistry, and engineering principles. It is important to work with a team of experts and conduct extensive testing to ensure that the fuel cell performs as intended.
Disadvantage of fuel cells
Although fuel cells are a promising technology for producing electricity, they do have some disadvantages:
High cost: Fuel cells are still relatively expensive to produce compared to other forms of electricity generation.
Limited fuel options: Most fuel cells currently in use require hydrogen as a fuel, which is not widely available and can be expensive to produce.
Durability issues: Fuel cells can be sensitive to contaminants in the fuel, which can reduce their lifespan and efficiency.
Complex maintenance: Fuel cells require careful maintenance and monitoring to ensure their proper operation, which can be challenging and time-consuming.
Limited power output: While fuel cells can be used to produce electricity for a variety of applications, their power output is limited and may not be sufficient for some large-scale applications.
Safety concerns: Hydrogen is highly flammable, which can be a safety concern in some applications. Fuel cells may also produce other gases or byproducts that can be potentially hazardous.
Infrastructure requirements: Building a hydrogen fuel infrastructure is a major challenge, as it requires significant investment in new infrastructure for production, storage, and distribution.
Despite these disadvantages, fuel cells still offer several advantages over other forms of electricity generation, such as high efficiency, low emissions, and quiet operation. As the technology continues to improve and costs come down, fuel cells could become a more viable option for producing electricity in a variety of applications.
Trị viêm đại tràng
Ai có bệnh nên dùng, bài này cũng là kinh nghiệm của già làng, nay thấy bạn này chia sẻ TL đưa luôn! *** “Người Trung Quốc nói người việt na...

-
Hà Nội một ngày tháng 11 tiết trời trở lạnh, khu điều trị tích cực Bệnh viện Hữu nghị Việt – Xô nằm trên tầng 8 im ắng đến đáng sợ...
-
VỤ ÁN HỒ DUY HẢI Mẹ của Hồ Duy Hải Trong mười hai năm trời Cầm đơn xin kháng cáo Gõ cửa ở nhiều nơi Vụ án Hồ Duy Hải ...
-
Tổng hợp tài liệu dành cho người mất gốc http://olalink.org/mKpVsctd ngữ pháp tiếng anh cho học sinh mất gốc http://olalink.org/T...
-
CUỘC ĐỜI ĐỨC PHẬT THÍCH CA Phần 1: Cuộc sống ban đầu và hôn nhân Thơ: Đỗ Tấn Thích Vào thế kỷ thứ tư Thời đại...
-
Nhận xét: Những nhận xét dưới đây hoàn toàn là chủ quan, dựa trên các thông tin đọc được trên báo và trên mạng kết lại, cho nên tôi luôn...
-
Ta đã biết, việc hình thành "văn hóa đọc" là rất khó đối với mỗi con người trong xã hội hiện nay. Theo thống kê, ở nước ta ...
-
EM CÓ VỀ QUẢNG NGÃI VỚI ANH KHÔNG Thơ: Đỗ Tấn Thích Em có về Quảng Ngãi với anh không? Quê đó có sông xanh, cánh đồng bát ngát ...
-
10 CÂU CHUYỆN CỰC NGẮN ĐÁNG SUY NGẪM (từ FB Dieu Le) ** Câu chuyện thứ nhất: Một cậu học trò lớp ba viết ...
-
XEM XÉT KỶ LUẬT NHỮNG SAI PHẠM CỦA BÍ THƯ VÀ CHỦ TỊCH TỈNH QUẢNG NGÃI Bí thư cùng Chủ tịch Của tỉnh Quảng Ngãi này Hôm nay ...